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1.  Overview 

1.1 Purpose of the Working; Group 

A feasibility study working group was formed at CCPC 
on 1 July 197^ as a technical working group sponsored by 
the Deputy for Communications and Navigation, Electronic 
Systems Division to determine the feasibility, form and 
specification inputs required to incorporate the kernel 
into a communications processor (CP).  This document 
represents the results of that effort. 

1.2 Scope of the Study Effort 

The study effort addressed only the technical aspects 
of providing security for a CP and avoided assessing a 
security kernel approach with regard to any cost-related 
or management-related criteria.  To this end, the working 
group directed its effort toward determining the technical 
feasibility of a kernel approach to CP security using as a 
guideline several basic questions. 

( 1 )  Is i,here hardware to implement the kernel? 

(2) What hardware modifications would be necessary 
to implement the kernel? 

(3) What coding limitations/bonuses would be 
involved with implementing the kernel? 

(4) What does the kernel do to throughput? 

(5) What does the kernel do to executive functions? 

(6) Will the kernel adequately protect against 
compromise? 

(7) What does the kernel do for integrity? 

It was felt that the study required to provide the 
answers to those questions would aid the working group in 
developing sound conclusions as to the technical 
feasibility of a kernel approach to CP security. 

The effort required to answer these questions and 
ultimately to develop the conclusions of the study 
involved a process characterized by the following steps: 

(1)  The kernel concept as employed in the PDP 11/45 
was discussed followed by discussions of a typical message 



switching system. 

(2) A trial design which synthesized the two 
concepts was then developed. 

(3) The critical aspects (e.g., timing, sizing, 
production, and verification methods, hardware 
availability) of the synthesized approach were 
investigated. 

(4) Answers to the guideline questions were 
formulated based on the findings of the various aspects of 
the study, assumptions that had to be made in the course 
of the study (refer to Section 1.4), and some tailoring of 
the original kernel concept that was necessary during the 
course of the study (refer to Section 2). 

(5) A set of conclusions was then drawn based upon 
the answers to the guideline questions and the criteria 
stated in 1.2 (3). 

1.3 The Secure Communications Executive (SCE) 

It was found that a significant degree of tailoring 
of the original security kernel concept (1) was necessary 
during the course of the feasibility study.  As detailed 
in Section 2 of this report, the functions of the security 
kernel have been expanded from those which solely perform 
security management to those which provide not only this 
feature but also some of those functions performed by an 
executive in a communications processor.  This has 
resulted in the security kernel taking on a much broader 
role in communications processing activities. 

It is felt that the term "security kernel", as 
originally conceived, is no longer applicable to the 
concept of providing security for CP becuase of the 
expanded role developed during the study effort for the 
software module intended to provide the security.  The 
software module has taken on the characteristics of an 
executive which also performs security management for a 
communication processor, and as such will henceforth be 
termed a "Secure Communications Executive" (SCE). 

(1) ESD-TR-73-294, Schiller, L., "Design of a Security 
Kernel for the PDP 11/45", 30 Jun 1973. 



1.4 Assumptions Made During the Study Effort 

During the course of the feasibility study, it became 
necessary to make several assumptions to: 

(1) Reasonably limit the scope of an assessment to 
within the time and manpower constraints of the working 
group. 

(2) Allow a calculation or series of calculations to 
be performed. 

(3) Provide a baseline from which assessments or 
conclusions could be made. 

The assumptions made during the feasibility study are 
listed. 

(1) A message consists of 4 packets.  Each packet 
consists of 256 characters (bytes). 

(2) The communications system will protect 
information along 8 security levels, as per AUTODIN. 

(3) CPs will handle 6 levels of classified 
information (exceptions:  R (NATO) and M (SI/SAO) 
traffic). 

(4) The SCE is a software device and cannot directly 
address the hardware aspect of the system integrity 
question.  Integrity as addressed within this paper is 
narrowed to include only that of the processor software 
itself. 

(5) Code and format conversion must be done by the 
system. 

(6) The hardware as addressed within the paper 
operates correctly. 

(7) For the purposes of timing and sizing 
calculations, a message passing through the CP will 
undergo no exception processing. 

(8) The MITRE mathematical model of the SCE is 
appropriate for a CP. (1) 

(1) ESD-TR-73-278, Vol I-III, Bell, D. and LaPadula, L., 
"Secure Computer Systems". 



1.5 Format of the Paper 

This paper details the findings of the month-long 
feasibility study effort.  Section 2 describes the design 
features of the SCE with regard to structure and functions 
performed.  Section 3 addresses the means in which the SCE 
would provide for security and the extent to which it 
would help maintain system integrity.  Section 4 presents 
calculations of timing and sizing estimates that would be 
characteristic of a communicalons processor incorporating 
an SCE.  Section 5 presents the production and 
verification procedures required to develop the SCE and 
allow for its ultimate certification.  This section also 
presents a schedule for completing the production and 
verification procedures for the SCE and briefly addresses 
the methods of producing and verifying the applications 
software.  Section 6 provides a list of hardware and 
software requirements for implementing the SCE and matches 
several eligible machines against the hardware 
requirements presented.  Section 7 presents a list of 
conclusions to which the working group has cone as a 
result of the study effort. 

'    ', a 



2.  Target Design 

?.1  Secure Communications Executive (SCE) 

2.1.1 Functional Requirements 

Th- CP SCE will support the execution of a large 
number of concurrent processes in communication 
processors.  It provides those functions necessary for 
controlling access to the system's real resources, and 
provides applications and utility/support software with an 
efficient means of accessing and managing these resources 
in terms of logical resources.  In doing so, it enforces 
the security rules for access by processes to resources. 
The SCE has complete responsibility for management of the 
hardware elements of the access control mechanism (e.g., 
description registers) and for access control data bases. 

The functions performed by the SCE are as follows: 

(a) Resource control/management 
(b) Interrupt initial processing 
(c) Scheduling 
(d) Storage protectior: 
(e) Multiprogramming 
(f) Interface control 
(g) Security control 

The storage protection function is distinguished from 
security control, since it is in large part an integrity 
function. 

2.1.2 SCE Commands' 

2.1.2.1 Create Process 

This command will allow a process to create a 
separate process, having a pre-defined function and 
clearance. 

2.1.2.2 Delete Process 

A process may delete itself, or a process it created, 
from the set operating in the system. 

2.1.2.3 Block 

In a manner analogous to that used for the P 
synchronizing primitive, a block command (directed to a 
specific semaphore) will unbind the calling process from 



the physical processor and bind to the processor the 
highest priority "ready" process. 

2.1.2.4 Wakeup 

The wakeup command performs a funotion comparable to 
that of the V synchronizing primitive, with the added 
parameters of a priority (for the awakened process) and a 
2-word message (to be made available to the awakened 
process). 

2.1.2.5 Create Segment 

This command creates a logical segment for subsequent 
inclusion in the address space of a process. 

2.1.2.6 Delete Segment 

Removes a previously created logical segment from the 
3et available for inclusion in any process address space. 

2.1.2.7 Give Access 

Adds a specified process to the access control list 
of a segment, in a specified mode. 

2.1.2.8 Get Access 

Associates a hardware descriptor register with a 
specified segment, if access control rules allow. 

2.1.2.9 Release Access 

Unbinds a descriptor register from its currently 
associated segment. 

2.1.2.10 Swap-In 

Insures that the specified segment is physically 
located in main memory. 

2.1.2.11 Swap-Out 

Allows the specified segment to be moved to secondary 
storage. 

2.1.2.12 Reconfigure Segments 

Performs, under strict control, the updating of SCE 
data bases specifying the variable security-related 



characteristics of all I/O interfaces. 

2.1.2.13  Do I/O 

Provides a generalized function through which the SCE 
can exercise the required degree of control ov^r  I/O 
operations, including the initiation of data transfer to 
or from specified lines, the reading of the real-time 
clock and access to device status. 

2.1.3 SCE Data Bases 

2.1.3.1 Memory Block Table 

Flags (allocated, concatenated, free, reserved) 2 bits 
Chain or Active Segment Table Entry (ASTE) 

Number 14 bits 
Size 1 byte 

Total 3 bytes per entry 

2.1.3.2 Segment Hash Table 

Total 2 bytes per entry 

2.1.3.3 Active Segment Table (AST) 

Type, status, changed, aged, classification      1 byte 
Size 1 byte 
Disk address 2 bytes 
Chain (for hash table) 2 bytes 
Address 2 bytes 
Descriptor count, age chain 2 bytes 
Access Control List (ACL) head 4 bytes 
Category 2 bytes 

Total 16 bytes/AST entry, plus space for ACL Entry Pool, 
2 bytes/element 

2.1.3.4 Semaphores (IPC Elements) 

Process pointer 1 byte 
Priority 1 byte 
Link 1 byte 
Message 4 bytes 

Total 7 bytes/semaphore 



2.1.3.5 Process Table 

SCE register storage (highly machine-dependent)  18 bytes 
Flags (blocked, ready, inactive) and line 1 byte 
Class 1 byte 
Category 2 bytes 
Process Segment ASTE Number 2 bytes 
Semaphore queue head 1 byte 

Total 25 bytes/process 

2.1.3.6 Port Assignment Table 

Address 1 byte 
Port ID 1 byte 
Classification 1 byte 
Category 2 bytes 
Function 2 bytes 
Process ID 2 bytes 

Total 9 bytes/port 

2.1.3.7 Process Segment 

Descriptor register storage 32 bytes 
Process ID 2 bytes 
Process number 2 bytes 
Classification 1 byte 
Category 2 bytes 
Segment Descriptor Numbers 64 bytes 
SCE Stack as required 

Total 103 bytes plus SCE stack as required, not required 
to be core-resident. 

2.1.3.8 Directory 

Type, status, classification 1 byte 
ACL Head 1 byte 
Category 2 bytes 
Disk address 2 bytes 
Size 2 bytes 

Total 8 bytes/entry, plus space for the ACL elements, 
2 bytes/element, not in general core resident. 
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2.1.4 Other SCE Considerations 

2.1.4. 1  Utility and Support Functions 

Certain functions which might be found in an 
Executive program are not included in the SCE.  These are 
generally characterized as utility and support functions. 
Since they are outside the SCE, they are bound by the 
SCE's security enforcement, but they may where necessary 
be certified, "trusted" processes. 

Functions included in this category are the 
following: 

Trusted Process-? 

Loh-isr/ Initializer 
DASD Patch 
Program End of Job (EOJ) 

Single-level. System High 

DASD/Tape Copy and Compare 
DASD to Tape to Printer Copy 
Memory/Program Dump 

Single-level 

DASD Dump 
DASD/Tape Initializer 
Peripheral Error Logger 

2.1.4.2  Constraints 

The requirement that the SCE provide effective 
security controls places significant restrictions on the 
accesses to system resources it allows, as described in 
Section 3.1.2.  As a consequer.ee, a system of applications 
programs designed to efficiently use the SCE will be 
influenced by the restrictions placed upon it.  In 
particular, different processes will be required to handle 
information of different security levels, and 
communication between processes will be subject to the 
SCE's security-enforcing rules.  Certain objects existing 
in the system (e.g., queue slots) must be partitioned 
according to security characteristics, rather than being 
held in a single homogeneous storage area.  These 
constraints do not limit the functional capability of the 
overall communications processor;  they do affect the 
manner in which its functions are implemented.  More 



detailed descriptions are given in the following section. 

2.2 Applications Target Design 

The applications target design presented directly 
reflects SCE considerations.  The functions, required at a 
CP, have been organized to better fit an SCE and allow 
convenient process structuring. 

2.2.1 Applications Structure 

Figure 2.2.1-1 indicates the processes involved in 
message switching.  This process division would serve well 
for modular system development. 

2.2.2 Process Functions 

Table 2.2.2-1 following Figure 2.2.1-1 enumerates the 
functions associated with each of the processes shown in 
the Figure for the CP message switching system.  These 
functions are further explained in the applications 
software specification. 

10 



Applications Structure 

C 
E 

SCE  - SECURITY COMMUNICATIONS EXECUTIVE 

MLLH - MULTI-LEVEL LINE HANDLER 

IDC  - INPUT DEVICE CONTROLLER 

ODC  - OUTPUT DEVICE CONTROLLER 

CIC  - COMMON INPUT CONTROLLER 

COC  - COMMON OUTPUT CONTROLLER 

J/Q  - JOURNALING/QUEUING 

MLTH - MULTI-LEVEL TAPE HANDLER 

Figure 2.2.1-1 

11 



MLLH Functions: 

Line Controller Interface 
Validation 
Timing 
Obtain Buffers and Control Toggle 
Specification of Classification 
Error Handling 
Restart Support 
Line Unloading and Starting Support 
Reconfiguration Considerations 
Trend Analysis Support 
IDC/CIC Interface.. 

IDC/CIC Functions: 

MLLH Interface 
Link Protocol Control 
Line Monitoring 
ADCCP Supervisory Function 
Packet Validation 
Header Validation 
Interface to Message Service Routine 
Message Sequence Number and Date Time Group (DTG) 
Trace Information Adding 
Addressee Summarizing 
Operator Interface 
Code and Format Conversion 
Holdoff of Inputting 
Statistics Collection 
Restart Support 
Device Monitoring 
Error Analysis 
Diagnostics 
Timing 
Establishment of Queue Slot Information 
J/Q Interface 

Table 2.2.2-1  Process Functions 

12 



J/Q Functions: 

IDC/CIC Interface 
Message Collecting and Timing 
Queue Processing 
Activation of On-Line Retrieval 
Issuing of Partial and Complete Acknowledgement 
Message Deletion After One-Half Hour 
Forced Writes to Journal 
Tape Buffer Management 
Interface to MLTH 
Pushing of Work to Output Device/Line 

COC Functions: 

Routing 
ODC Interface 
Operator Interface 
Interface to Message Service Routine 
J/Q Interface for Disposition Reflection 
Swap Out 
Subnet Bit Summarizing 

ODC Functions: 

COC Interface 
Swap In 
Code and Format Conversion 
Line Monitoring 
Link Protocol Control 
MLLH Interface 
Acknowledgement Indication or Formulation 
Control of Data Pack Retransmission 
Statistics Collection 
Restart Support 
Device Monitoring 
Error Analysis 
Diagnostics 
Timing 

Table 2.2.2-1  Process Functions 

13 



Asynchronous Functions: 

Alternate Routing 
Detail Diagnostics 
Auto-Dial Log On 
System Reconfiguration 
Probe Generation 
Site Status Message Generation 
KG34 Initialization 
System Initialization 
System Restart 
USTI 
Console 
Service Message Generation 
Traffic Trace Message Generation 
Statistics Report Formulation 
System Drain 
Intercepting 

Table 2.2.2-1  Process Functions (Cont.) 

14 



3-  Security Provided by. the SCE 

3.1  Compromise Prevention 

3.1.1 Hefi.nition of Compromise 

A security compromise is defined as one or more of 
the following conditions taking place: 

(1) A terminal or interfaced system receives a 
message classified to a level higher than the clearance 
level of the terminal or interfaced system. 

(2) A terminal or interfaced system receives a 
message having a special access category not contained in 
the set of special access categories authorized for the 
terminal or interfaced system. 

3.1.2 Compromise Prevention by Means of Internal Access 
Control 

A major feature of the SCE is that it effectively 
prevents compromise that could otherwise occur due to 
software errors or maliciously inserted software 
trapdoors. (1)  The concepts of a "process" and "access 
authorization" are necessary to understand the mechanism 
of the SCE in compromise prevention: 

Process - A process in a CP is defined as a program 
in execution or a virtual machine state.  A process is a 
sequence of processor activity which has a logical 
identity, a security clearance, access capabilities 
(implied by its clearance together with 
access-conl-rol-lists associated with information 
segments), and a well-defined functional responsibility. 
Each process performs a portion of the total 
communications processor function. 

Access Authorization - A process, P, has access 
authorization to a segment of information, S, if and only 

(1) The SCE does not address compromise that could occur 
due to hardware failure or deliberately "debugged" 
hardware.  Secure production methods, reliability 
requirements, and testing must be applied to insure that 
the hardware performs as specified and does not perform 
any undocumented operations.  The SCE approach relies upon 
the correctness of the hardware as specified, as does any 
programmed internal access control mechanism. 

15 



if the following are true: 

(1) The clearance level (i.e., unclassified, 
confidential, secret, top secret) of P is greater than or 
equal to the classification level of S. 

(2) The set of special acces.. categories (e.g., 
SIOP, SI/SAO) attributed to P contains contains the set of 
special access categories attributed to S. 

(3) P's identification appears on the 
access-control-list associated with S.  The 
access-control-list entry specifying P will also specify 
the access mode (e.g., read/write, read/execute) 
authorized for P to access S. 

The function of the SCE as an access control 
mechanism is to manage the real resource of the bare 
machine (e.g., the CPU, addressing registers, memory, I/O 
channel and port interfaces) to allow processes access to 
only that information for which they have access 
authorization.  The fact that the SCE is verified as 
functionally correct insures that the access control it 
provides will be effective.  Since all processor activity 
is directly linked with processes in execution, 
effectively enforcing every access made by processes 
according to the access authorization rules insures that 
the classes of compromise specified in Section 3.1.1 
cannot occur. 

3.1.3 Access Domains of a Process ar.'d _t'u- £_- Property 
The domain of a process refers to the set of segments 

(data or procedure) currently addressable by the process 
(i.e., segments which have been made directly accessible 
in the address space of a process).  In the context of the 
machines under consideration for supporting the SCE, the 
domain of a process is defined by the address values 
currently loaded (or designated to be loaded) in the 
machine's descriptor registers for the process. Only the 
SCE can alter the domains of processes.  The SCE prevents 
compromise by applying rules which determine whether or 
not to honor a process' request to add a segment to its 
domain (with some mode of access). First, the process 
must have access authorization to the segment.  Second, a 
condition called the "-property must not be violated by 
inclusion of the desired segment in the domain of the 
process. The "-property dictates that the domain of a 
process cannot include read-access to a segment of higher 
classification than any single segment accessible with 
write-access in the domain. This property absolutely 
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prevents a process from downgrading information by reading 
from a classified segment and writing into a lower 
classified segment.  The machine code executed by the 
process may contain errors or maliciously planted 
trap-doors, and yet no program can effect a security 
compromise due to the restriction on the domains of the 
processes executing the program. 

3.1.4 Non-SCE "Trusted" Programs 

The *-property, described above, will not be 
necessary for the following processes: 

1. I/O line-handler processes 
2. Tape-handler process 
3-  System-console process 
4. Authentication process 
5. System initialization process 

These processes will be "multilevel" in that their 
domains will contain read/write access to segments of 
various classifications.  These multilevel processes will 
be constrained by the SCE to execute only programs which 
are proven "trustworthy" (ref. Section 5.2.1) with respect 
to the criterion of not downgrading information.  This is 
a much simpler proof than verifying the complete 
functional correctness of these programs, and therefore, 
the identification of the need for several trustworthy 
programs is not detrimental to the effective certification 
of a CP with respect to compromise prevention.  Although 
multilevel processes are not constrained by the 
•-property, their domains will never include any 
capabilities for managing the real resources (e.g., in 
particular, descriptor registers and the SCE'3 
access-control data base) of the system.  Those 
capabilities are reserved exclusively for the SCE. 

3.2 System Integrity 

3.2.1  Definition 

:>yntem integrity includes those functions necessary 
to insure that the information in the system is delivered 
accurately without distortion or errors introduced during 
distribution, that the failure of one or more hardware or 
software elements can be adequately detected and an 
appropriate restart/recovery procedure initiated and that 
only authorized terminals or source/destination devices 
and operators are granted access to the various security 
levels of the network.  System integrity has three 
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elements: message integrity, functional integrity, and 
security.  Message integrity is concerned primarily with 
the accuracy and validity of information flowing between 
information sources and destinations in the system. 
Functional integrity involves those steps required to 
detect the failure of hardware or software elements and 
initiate an appropriate action. Security concerns itself 
with those actions taken to insure that only authorized 
terminals or souroe/destination devices and operators are 
granted access to the various security levels of the 
network. 

3.2.2 The SCE and System Integrity 

All of the elements of system integrity involve both 
hardware and software.  The SCE is a software device and 
thus cannot directly address the hardware part of the 
system integrity question.  How the SCE aodresses system 
security is answered in Section 3.1.  This section (3.2) 
will discuss what advantages it provides for the elements 
of message and functional integrity. 

3.2.3 The SCE and Message Integrity 

The SCE will not prevent improper modification of 
information by processes having authorized access.  The 
amount of testing necessary to certify that the system 
possesses message integrity can be reduced by restricting 
write access to the smallest number of processes possible. 
The modification of information by any other processes is 
prevented by the access control features of the SCE. 
However, proper handling of the data is still dependent 
upon the correctness of programs executed by processes 
having authorized access. 

3.2.4 The SCE and Functional Integrity 

Clearly, system integrity depends upon the 
correctness of each software module as well as the 
correctness of each hardware element.  The SCE is an 
access control device which in addition to granting or 
denying access to system resources to a module also 
controls the type of access.  As such, the SCE has no 
control over the correctness of any software module. 
However, since the security enforcing functions of the SCE 
must be proved correct, their integrity is unquestioned. 
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3.2.4.1 Functional Integrity of the Applications H> <l 
•^ ilitv/Support Software 

3.2. H. 1.1  Trusted Programs 

Trusted programs will be those modules of software 
which the executive program (SCE) trusts not to downgrade 
information.  This trust is founded on a formal proof that 
the module does indeed have this property.  As such, 
trusted programs can be expected to perform security 
related functions correctly. 

3.2.4.1.2 Other Applications and Utility/Support Software 

Careful design testing and debugging is the approach 
to determining applications software correctness.  This is 
becuase a formal model (analogous to the SCE model) of th^ 
functions of the applications software does not exist and 
would be impractical to synthesize. 

3.2.4.2 The SCE and Test and Debugging 

The SCE effectively restricts processes to executing 
programs and accessing data for which the process has 
access authorization.  Verifying the correct execution of 
a program by a process is simplified since only the 
authorized domain of the process need be checked to 
determine the total effect of the computation.  Obscure 
side effects external to the authorized domain are 
absolutely prevented by the SCE which can also give 
warning if the process attempts unauthorized access. 
Moreover, debugging may be simplified since only the 
processes having authorized access to the errored 
information need to be checked.  The time and effort 
required to discover and correct an error should be less 
since fewer programs need be checked. 
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4.  Performance 

This section examines the performance of a 
communications processor using an SCE.  The performance 
estimates are based on the requirements of the maximum 
configuration, maximum-throughput CP. 

Section 4.1 below addresses the fraction of the 
processor's time that must be allocated to the SCE. 
Section 4.2 considers overall processor timing including 
application as well as SCE functions.  Section 4.3 
presents a computation of SCE main memory requirements and 
Section 4.4 discusses secondary storage timing. 

4.1  SCE Timing 

The processor time requirements of the SCE are 
divided into two major categories.  The first includes the 
processor time allocated to process switches, and the 
second time allocated to other SCE functions. 

The basic throughput requirement for the 
maximum-throughput CP is 6000 characters per second in 
plus out.  A ten percent over head for packet addresses is 
required, yielding a total of 6600 characters per second. 
A typical message is assumed to include four 256-character 
packets.  Dividing the characters per second for the 
processor by typical message length (2x256 = 1024 
characters per message) yields 6.45 messages per second in 
plus out.  As the counts of process switches and other SCE 
operations are on a "per message in" basis, the required 
figure is input messages per second.  Assuming messages-in 
equal messages-out (single address messages at the CP) the 
figure above must be divided by two to yield 3.22 
messages-in per second. 

4.1.1  Process Switches 

The count of process switches per message through the 
CP is based on the target application design of Section 
2.2.  Tables 4.1.1-1 through 4.1.1-3 summarize the 
required process switches for a typical four-packet 
message. 

The process switches of Table 4.1.1-1 occur once per 
packet for each of the first three packets of a message. 
The switches of Table 4.1.1-2 occur once per message (for 
the last input packet of the message).  The process 
switches of Table 4.1.1-3 occur for each of the four 
output packets of the message.  Multiplying the counts of 
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process switches from 

Table 14.1.1-1 by 3 
Table 4.4.4-2 by 1 
Table 4.1.1-3 by 4 

and summing yields 84 process switches per message. 

Total time per second required for process switches 
is determined by the time per process switch and the 
process switches per second. 

Switch Function of process switched to 

Cur  Proc—MLLH    Create segment for received packet 

MLLH—IDC-CIC      Process input packet 

IDC-CIC—J/Q       Journal 
Construct Packet ack 

J/Q—ODC Process Packet ack for output 

ODC-MLLH Output packet ack 

MLLH—Cur  Proc Done 

Cur  Proc—MLLH Output done 

MLLH—ODC Record output of packet ack 

ODC—COC Ready for next output packet 

COC—Cur Proc Done 

Table 4.1.1-1 
Process switches for typical input packet 
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Switch 

Cur Pro—MLLH 

MLLH— IDC-CIC 

IDC-CIC—J/Q 

J/Q—MLTH 

MLTH—Cur Proc 

Cur Proc—MLTH 

MLTH—J/Q 

J/Q—ODC 

ODC—MLLH 

MLLH—Cur Proc 

Cur Proc—MLLH 

MLLH—ODC 

ODC—COC 

COC—Cur Proc 

Function of process swlU he.! to 

Create segment for received packet 

Process input packet 

Journal; Packet ack 

Write rasg to tape 

Wait for journal done 

Journal done 

Resume journal 

Process EOM ack for output 

Output EOM ack 

Done 

Output done 

Record output of EOM ack 

Ready for next packet 

Done 

Table 4.1.1-2 
Process switches for last packet of input message 
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Switch 

Cur Proc—MLLH 

MLLH—ODC 

ODC—COC 

COC —ODC 

ODC—MLLH 

MLLH~Cur Proc 

Cur Proc—MLLH 

MLLH—IDC-CIC 

IDC-CIC—J/Q 

J/Q—Cur Proc 

Functior: of oro.oess swj.te.hed to 

Ready for more output 

Record output done 

Route a packet 

Ready for output 

Do output 

Done 

Packet ack received 

Process Packet ack 

Record packet ack and dismiss packet 

Table 4.1.1-3 
Process switches for output packets 
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Process switches/second = 
Messages/second x Process 

switches/message 

= 3.22 x 84 

= 270 

Assuming, based on the existing security kernel code for 
PDP-11/45, a time of 500 us per process switch, a total of 
135 ms/secor:d is required for process switches.  This 
figure, indicating 13*5 percent of processor time for 
process switches, applies for the peak CP load. 

4.1.2 Other SCE Functions 

The major operations required of the SCE, other than 
process switches, are those dealing with segment creation, 
deletion, and swapping to and from main memory.  Each 
four-packet message requires twelve segment creates — 
four for received packets, four for transmitted 
acknowledgement packets, and four for received 
acknowledgements.  Each message also requires eight 
segment deletes — for the acknowledgements — and eight 
swap-outs and four swap-ins.  The excesses of swap-outs 
over swap-ins and of creates over deletes reflects the 
fact that messages are allowed to accumulate in the system 
until disk storage fills. 

The total of SCE operations is 

12 creates 

8 deletes 

8 swap-outs 

4 swap-ins 

or 32 SCE operations per message.  Assuming (very 
conservatively) one millisecond per SCE operation yields: 

32 ms/message. 

At 3.22 messages/second, the time for other SCE operations 
is 

3.22 x 32 or 103 ms/second 
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4.1.3 Total 

Summing the figures presented above yields 

135 ms/second for process switches 
103 ms/second for other operations or 
238 ras/second for SCE use 

This set of figures is based on relatively straightforward 
exception-free message processing, but on relatively 
conservative SCE timings.  Thus an estimate of 25 to 30 
percent of processor time for SCE operations seems 
conservative. 

It should be noted that the estimate above applies to 
peak message loading and a busy processor (see Section 
4.2).  If the processor is less busy (less than 6000 
characters per second) , SCE time requirements will be 
reduced ir. proportion. 

4.2  System Timing 

The system loading of 6000 characters per second for 
a CP implies a very heavily loaded processor.  It is 
appropriate to consider the processor load on the CP 
independent of the SCE.  A system developed recently by 
CCPC requires 97 instructions per character in and out to 
perform its message processing functions.  Perhaps 15 
percent of the instructions in this system would not apply 
to a CP, so an estimate of 82 instructions per character 
seems reasonable.  Assuming the same ten percent overhead 
for packet headers used in Section 4,1 yields: 

6600 characters/second 

82 instructions/character 

or 541000 iri3tructions/second 

or       1.84 usec/instruction 

The class of minicomputer processors being considered for 
the CPs are not this fast — times of 3 usec per 
instruction or more are more usual. 

It should be noted that the problem raised above is 
independent of the use of a SCE.  If a SCE requires more 
instructions per message than the executive of the CCPC 
system discussed above, it will aggravate the problem; if 
less, it will alleviate it.  However, it appears that the 
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basic problem is caused more by the 6000 character per 
second throughput and the 82 instructions per character 
than by the use or absenoe of a SCE.  A separate study 
should address these issues. 

4.3 Matr Memory Size 

This section considers the main memory requirements 
of the SCE itself.  The SCE requires memory space for 
resident code, for resident tables and data bases, and for 
allocation on an as-needed basis to data bases such as 
directories that are not always in main memory. The SCE 
space requirements have been estimated from the design 
presented in Section 2.1 and from experience with the 
existing kernel for the PDP-11/45. 

4.3.1 Resident Code 

The resident code requirement for a SCE is estimated 
at 12000 bytes, based on experience with the PDP-11/45 
kernel and a fair margin for growth. 

4.3.2 Resident Tables 

The space requirements for SCE resident tables are 
dependent on the values of several variables defining the 
CP configuration and mode of operation.  A key factor is 
the number of processes in the system.  Using the process 
organization shown in Section 2.2.1, 132 processes can be 
identified as shown in Table 4.3.2-1.  The exact number of 
processes is defined by the number of ports (taken at 38), 
the number of security levels (taken at 7) and the number 
of protocols (taken at 3). An additional forty-eight 
processes are allowed for asynchronous, utility, and 
support functions, and safety factor. Thus the total 
process count is 180.  There may also be conservatism in 
the estimate of 132, as it appears that a CP will handle 6 
rather than 7 distinct security levels. 
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Input MLLH/Port x 38 ports 

(IDC/CIC)/Protocol/level x 3 Protocols x 7 levels 

(J/Q)/level x 7 levels 

(COC)/level x 7 levels 

(ODC)/level/Protocol x 3 Protocols x 7 levels 

Output MLLH/Port x 38 ports 

Table 4.3.2-1  CP Process Count 

The following paragraphs Identify specific tables in 
the SCE, their sizes, and the space they require.  Table 
4.3.2-2 summarizes this data. 

38 

21 

7 

7 

21 

132 

Memory block table: 

Active Segment table 

requires 3 bytes per block for each 
256-byte block.  Assume a 256K memory, 
for 1024 blocks.  Then 3 bytes/block x 
1024 blocks = 3072. 

requires 16 bytes per ASTE.  The number 
of ASTE's is estimated at 512, allowing 
two private segments per process (KS and 
stack) plus about 150 "general use" 
shared segments.  In addition, 512 2-word 
"connected process list" entries are 
allowed in a pool associated with the 
AST.  Thus, 
512 ASTE's x 16 bytes/ASTE r 8192 bytes 
512 CPLEs x 4 bytes/CPLE = 2048 bytes 
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Memory block table 

AST 

CPL pool 

Hash Table 

IPC Element Pool 

Bit map (Disk) 

Process table 

3072 

8192 

2048 

512 

1792 

512 

4500 

20628 bytes 
Table 4.3.2-2 CP Table Summary 

Hash Table - A hash table, of size about half that of the 
AST, is used to speed access to ASTE's. Each 
entry is two bytes, so 2 bytes/HTE x 256 HTE's 
= 512. 

IPC elements - The number of IPC elements need not be much 
more than the total number of processes.  Each 
element requires 7 bytes, and 256 are allowed 
so 7 bytes/IPC x 256 IPC's 179: 

Disk bit map - A 512K byte disk and 256 byte blocks are 
assumed. At one bit in the map per disk block, 
the map requires (1024K/256) blocks x 1/8 
byte/block s 512 bytes.  A disk of this size 
will allow approximately two minutes of 
message build-ups before saturating the 
disk. 

Process Table - The process table requires 25 bytes per 
process.  With 180 processes active, the table 
consumes 25 bytes/process x 180 processes = 
4500 bytes. 

The total requirement for SCE resident tables is thus 
20628 bytes. 

4.3.3 Allocatable Space 

Space is required for allocation to directories and 
per-process segments as a function of system activity. 
With three messages per second processed and about 6 
processes involved in the handling of each message, it 
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seems reasonable to allow storage for two seconds worth, 
or  thirty-six sets of per-process segments.  Each process 
requires two per-prJC^T. segments of 256 bytes (or less). 

In addition, a fair number (perhaps fifteen) of 
directories should be in main memory, at 1024 bytes per 
directory.  This allocation totals: 

256 bytes/segment x 72 segments 

1024 bytes/directory x 15 directories 

or       33792 bytes 

This estimate is very crude, so a total of 50K bytes 
allocatable space is actually allowed. 

4.3.4  Summary 

Table 4.3.4-1 summarizes the SCE space allocation. 

Code 12000 bytes 

Tables 20600 bytes 

Allocatable       50000 bytes 

82600 bytes 
Table 4.3.4-1  SCE Space Summary 

The total allocation to the SCE is thus about 83000 byte3. 

4.4  Disk Usage 

The throughput requirement for the CP disk is 
determined by the number of disk reads and writes per 
message and the number of messages per secor.d.  Each 
message undergoes four swap-ins and eight swap-outs, for a 
total (1) of twelve disk operations per message. 
Multiplying this requirement by 3^22 messages per second 
gives 

3.22 messages/second x 12 operations/message 

(1) 
Note that a swap-in does not require a disk read if a 

segment's cor-- buff-.-r has not been reallocated. 
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or      38.6 disk operations/second 

This requirement allows 25ms per disk operation.  A 
typical small computer (head per track) disk has a 16 m3 
access time, so packet processing does not overload the CP 
disk.  If a read after write capability is desired, the 
disk must have multiple gap heads. 

Over and above the requirements for pack input and 
output are those for program overlays.  If each message 
requires four overlays (swap-ins) the operations per 
message rise to sixteen, and the total disk usage is 

51.5 operations/second 

or       19 ms/operation 

The latter figure is close to the limit for a small disk. 
It should be noted that this load, like that on the 
processor, is a function of the CP loading and not the 
presence or absence of an SCE. 
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5.  Software Production 

5.1  SCE Software 

5.1.1 Production Mrth.vlol \»Y 

Th^ SCE software design and implementation will be 
derived directly from a mathematical model of 
communications processor security that has been rigorously 
proven secure.  The technique of successive refinement 
will be used to insure that the ultimate SCE software 
correctly implements the mathematical model.  Four steps 
of successive refinement that are necessary for the SCE 
are as follows:  Math model;  formal specification; 
high-level language; machine language. 

Math Model - MITRE has developed a finite-state 
mathematical model of computer security which is 
appropriate for the abstract representation of 
communications processor security.  The model specifies 
subject and objects, corresponding to processes and 
segments respectively, access modes, and rules for 
determining how subjects may access objects.  The proof of 
the model's security (i.e., compromise prevention) insures 
that any programmed system which accurately corresponds to 
the model would be incapable of effecting a compromise. 

Formal Specification - This representation of the SCE 
is derived directly from the model and specifies 
state-variables and operatior.s on them in terms of data 
structures and algorithms appropriate for implementation 
on a computer.  The formal specification begins to take 
into account the specific features of the machine (such as 
the existence of descriptor registers, the I/O 
architecture, interrupt structure) for which the SCE is to 
be implemented.  The technique used for this level of 
representation is called a "Parnas Specification." (1) 

High Level Language - This representation provides a 
convenient intermediate step between the formal 
specification and the machine language for the SCE.  The 
high level language expression is derived directly from 
the formal specification.  Required and desirable features 
of the high level language are listed in Section 6. 

(1) Parnas, D.L., "A Technique for Software Module 
Specification with Examples," Communications of the ACM 
Vol 1r», >Io. 5, May 1972. 

31 



Machine Language - The fourth representation of the 
SCE is the binary code that is loaded into the machine. 
This code is derived directly from the high-level language 
through either a compiler program or through manual 
compilation.  An intermediate assembly language version 
may be useful in this translation from high level language 
to machine language. 

Each successive level of refinement must be proven to 
correspond correctly and completely to the level of 
representation from which it was derived.  Thia 
correspondence will then propagate the security of the 
mathematical model down to the level of machine language 
which represents the SCE in an executable form.  The 
techniques for proving the correspondence of each level to 
its immediate predecessor are described in Section 5.1.2 
below. 

5.1.2 Software Production Schedule 

The production schedule is shown in Figure 5.1.2-1. 
This schedule assumes that the MITRE finite-state 
mathematical model will be used.  Each task shown in 
Figure 5.1.2-1 is described below.  The SCE production 
effort will be preceeded by a two month lead-time for 
familiarization with the SCE concepts.  The lead-time 
effort will require four people designated for 
design/implementation and one person designated for 
systems engineering/technical support. 

5.1.2.1 Develop Formal Specification Das&l on Math Model 

The formal specification will be developed over a 
four month period with a work level of one or two people 
for design/implementation and one-half to one for systems 
engineering/technical direction.  The Parnas Specification 
developed will represent all data structures needed by the 
SCE to represent machine states and all operations 
provided by the SCE (i.e., the SCE's primitive functions) 
for performing state transitions.  Applications 
programmers can begin work at the time the formal 
specification is complete. 

5.1.2.2 Develop Hirh-T.Qvel Language Expression Based on 
Formal Specification 

A three month effort with a work level of one person 
for design/implementation and one-half for systems 
engineering/technical direction will be applied to the 
high-level language representation of the SCE. 
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5.1.2.3 Translate Kith-Level Language Expression into 
Machine Language 

A one month effort with a work level of one person 
for design/implementation and one-half for systems 
engineering/technical direction will be applied to this 
task.  This may be accomplished by a compiler program or 
by manually compiling the high-level language.  These two 
methods are discussed with respect to validation in 
Section 5.1.2.6.  A two month effort will be required if 
manual compiling is necessary.  Applications programmers 
can begin testing their programs at the time the 
translation is complete. 

5.1.2.4 Develop Certified Disassembler 

A two month effort with a work level of one person 
for design/implementation and one-half for systems 
engineering/technical direction will be applied to develop 
a certified disassembler program for use ir: the 
correspondence proof of the SCE's machine language 
expression to the high-level language (See Section 
5. 1.2.6). 
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5.1.2.5 Prove Correspondence of Fj_r nal Specification to 
Math Model 

This will require a four month effort with a work 
level of one person for design/implementation and one-half 
for systems engineering/technical direction.  MITRE has 
developed a methodology for proving the correspondence of 
the formal specification to the mathematical model.  The 
states of the mathematical model are first mapped into 
representations involving the data structures of the 
Parnas specification level.  Then each SCE operation at 
the Parnas specification level is shown to correspond to 
the application of a sequence of state-transitions at the 
math model level for correct correspondence.  Figure 
5.1.2.5-1 depicts this proof of correspondence. 

5.1.2.6 Prove Correspondence of Machine L.ai.gua.T'. .to 
r . ial Specification 

This will require an eight month effort with a work 
level of two people for design/implementation and one for 
systems engineering/technical direction.  Two stages are 
involved:  proving the correspondence of the high-level 
language to the formal specification, and proving the 
correspondence of the machine language to the high-level 
language. 

5.1.2.6.1 High-Level Language to Formal Specification 

The formal specification will provide a set of 
assertions for each data structure and SCE operation; 
these assertions must be correctly preserved in the high 
level language representation in order to prove the 
correspondence of the latter to the former.  Methods of 
proof-of-correctness are available which are appropriate 
for preserving the validity of assertions about programs 
written in a structured high level language. (1) 

5.1.2.6.2 Machine Language to High-Level Language 

The SCE object code will be derived directly from the 
high level language expression of the SCE, based on a 
statement by statement translation of the SCE's high level 
language expression.  The choice between the following two 
methods for accomplishing this translation depends upon 

(1) 'Hoare, C. A. R., "An Axiomatic Basis for Computer 
Programming," Communications of the ACM, Vol 12, No. 10, 
Oct 1969. 
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Correspondence Proof of Formal Spec.to Model 

V - States of the model 

W - States (i.e., V-functions) at the Parnas 
Spec level 

h - Mapping between Parnas Spec states and 
math model states 

R - State transformation at the math model 
level 

S - State transformation at the Parnas Spec 
level 

Figure 5.1.2.5-1 
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whether or not an appropriate compiler exists for the high 
level language in which the SCE is written: 

a. Compiler method:  There is no requirement for the 
compiler used in the translation to be certified correct. 
The compiler will produce a machine language version of 
the SCE, and also a mnemonic assembly language listing 
(complete with symbolic names for registers, storage 
operands, literals, entry point laoels, and a 
corresponding symbol table) which maps directly to the 
machine language.  The correct correspondence between the 
assembly language listing and the high-level language 
expression will be verified manually.  A certified 
disassembler will then be used to disassemble the machine 
language version of the SCE into mnemonic assembly 
language.  A manual comparison of the compiler's assembly 
language listing to the disassembler's output will 
complete the correspondence verification of the machine 
language to the high level language expression of the SCE. 

b. Hand-compile method:  In the absence of an 
appropriate compiler, the high level language expression 
of the SCE will be manually compiled into an intermediate 
assembly language or macro-assembly language expression. 
The correct correspondence between these two expressions 
will be manually verified.  An (uncertified) assembler or 
macro-assembler will then be used to produce the machine 
language version of the SCE.  Finally, a certified correct 
disassembler will be used to disassemble the machine 
language back into assembly language.  A manual comparison 
between the output of the hand compilation and the output 
of the disassembly will be accomplished to verify the 
correctness of the machine language version of the SCE. 

5.1.3 Contractor Requirements 

A contractor will be required to produce all levels 
of expression of the SCE.  The documentation of the 
correspondence proofs of each level to its predecessor 
will also be required of the contractor. 

The designers and implementors of the SCE will aJ1 be 
cleared to the highest level of information to be 
processed in the communication system.  Thi3 is because 
the correctness verification process takes place 
concurrently with the work involved in designing and 
implementing the SCE.  Verification of correctness cannot 
be effectively accomplished unless those individuals who 
will perform the technical verification are intimately 
familiar with the SCE.  An alternative approach would be 
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to have system-high cleared personnel closely monitor the 
efforts of designers and implementors (not cleared system 
high) throughout the entire software production cycle, as 
described in Section 5.1.2.  The software production 
facility must be cleared system-high to prevent any 
unauthorized modification of any media used in the 
production of the SCE (e.g., design sheets, ceding sheets, 
correctness documentation, cards, tapes, etc.';. 

5.1.4 SCE Load Tape 

The SCE software will be delivered as a single 
bootstrap tape containing a certified loader routine 
followed immediately by the SCE machine code and the 
tables and data bases needed to initialize the SCE in the 
machine. This tape will be capable of loading itself on 
the "bare" machine; i.e., it will not require the 
assistance of any software other than that contained on 
the tape.  The precise machine console and panel switch 
settings required to initialize the machine for bootstrap 
using the SCE tape will be specified in the operations 
documentation. 

5.1.5 Certificatlor; Procedure 

The certifying agencies will conduct a technical 
assessment of the SCE correctness verification 
documentation provided by the contractor.  For this 
assessment to be effectively accomplished, qualified 
personnel must be directly involved with the design and 
implementation of the SCE throughout the life of the 
software production effort. ESD can provide technical 
guidance during the entire SCE assessment period. 

5.1.6 Modification to SCE Software 

Any modification to the SCE will require 
re-establishing the correspondence between each modified 
SCE primitive (at the level modified) and the next higher 
level of abstraction.  Also required is the successive 
refinement of each modified primitive down to machine 
language, proving correspondence at each level.  This 
activity will require technical assessment and ultimately 
recertification. 
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5.2 Non-SCE Software 

5.?., 1  Multilevel "Trusted" Programs 

These programs will be executed by multilevel 
processes and, therefore, will be capable of downgrading 
classified information.  These programs nust be 
implemented by two-man teams cleared systetn-high, since 
the potential for security compromise exists. 
Proof-of-corrsctnass techniques with respect to assertions 
stating that these programs do not downgrade classified 
material must be applied to these programs,  A 
certification procedure similar to that used for the SCE 
will be applied to the trusted programs. 

5.2.2 Single-Level Programs 

T'I ;.;•: programs are executed by single level processes 
and, therefore, are incapable of effecting security 
compromise.  However, system integrity is an issue of 
concern r-garding practically all programs.  The 
successful functioning of a common system is dependent on 
all but H  small subset of programs in the system. 
Certificatior: of programs with respect to system integrity 
will rely upon software production procedures insuring 
that software designers and implementors are 
"non-malicious."  Standard test-and-debug methods must be 
applied to all applications software to achieve a 
desirable degree of system integrity. 

39 



6.  SCE Requirements 

6.1  Software Requirements 

6.1.1 General Software Require:'!.--! ts 

(1) The SCE must be proved correct. 

(2) A class of functions to load the SCE and 
applications software and to perform the total system 
initialization must be produced and certified. 

6.1.2 Software Development Requirements 

As discussed in Section 5, the SCE software should be 
developed using the technique of successive refinement 
from mathematical model to machine language code.  This 
development procedure is based on the general software 
requirements listed above and should use as a guideline 
the other requirements listed for production of the 
high-level language and machine language. 

6.1.2.1  High-Level Language Requirements 

5.1.2.1.1 Mandatory Features 

(1) Structured Programming Language 
(2) ALGOL-like Block Structure 
(3) Data Types:  Integer 

Character String 
Bit String 

(4) Locator of Pointer Variables 
(5) Structured Data Types 
(6) If-Then-Else Statements 
(7) While Loops 
(8) Separately Compiled Subroutines 
(9) Assignment Statements 
(10) Facilities to Handle Interrupts 

6.1.2.1.2 Desirable Features 

(1) User-Defined Data Types 
(2) No "GO TO" Statements 
(3) One-Entry Subprograms 
(4) Constraints on Locator or Pointer Variables to 

Point to Specific Data Types 
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6.1.2.2 Machine Language Requirements 

(1) *Jcr:-Interruptable Test and Set Instructions 
(2) Other Instruction Characteristics as 

Required in the applications Software 
Specifications 

(3) Interrupt Control Instructions 
(4) Certified Disassembler 

6.2 Hardware Requirements 

Based upon the design details of the SCE (refer to 
Section 2), a list of hardware features necessary to 
support the software was developed.  It should be 
emphasized that the requirements listed are only those 
determined to be applicable to the support of SCE 
software, and do not necessarily include any requirements 
for supporting the total communications processing 
activity. 

6.2.1 Mandatory Features 

CD  Memory Segmentation 

a. At least 8 descriptor registers/machine 
state 

b. Unique memory access of Read/Execute, 
Read/Write, No Access 

c. Minimum Segment Size - 256 Characters 

(2)  At Least Two Machine States with Suitable 
Levels of Privilege 

6.2.2 Desirable Features 

(1) Descriptor Base Registers 
(2) I/O Handled as Memory Access - Interrupts 

Vectored on a Per State Basis 
(3) Unique Memory Access of Read Only 
(4) Demand Paging 

6.3 Existing Hardware 

The working group listed six machines which were felt 
to be likely candidates for supporting the SCE as 
described in Section 2.  A study was conducted to 
determine which of these machines satisfied the hardware 
requirements listed in Section 6.2.  It should be 
reemphasized that these machines were investigated with 
regard only to satisfying the requirements for supporting 
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the SCE and were not analyzed as to their feasibility in 
the communications processing environment. 

It should also be noted that the list includes 
machines of one particular class, commercial 
minicomputers. Mioroprogrammable processors, suoh as the 
Burrough's "D" machine, were not investigated in this 
study, but could prove to satisfy the hardware 
requirements.  Further investigation in this area would be 
required before any machines in this class could be termed 
as eligible hardware to support the SCE. 

The results of the hardware study are presented in 
the Processor Characteristics Table which follows. 
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MANDATORY COMPUTER 

HARDWARE 
REQUIREMENTS 

DATACRAFT 
6024/4 

DATA GENERAL 
NOVA 840 

DEC 
PDP 11/45 

INTERDATA 
7/32 

MODCOMP 
IV 

PRIME 
300 

\t  least two machine 
states 

YES YES YES YES YES YES 

^t least 8 descriptor 
registers/machine state YES YES YES YES YES YES 

•iinimum segment size of 
256 characters or less NO NO YES YES NO NO 

Memory Access: 
Read/Execute YES YES YES YES YES YES 

Memory Access: 
No Access YES YES YES YES YES YES 

Memory Access: 
Read/Write YES YES YES YES YES YES 

DESIRABLE 
HARDWARE 
REQUIREMENTS 

descriptor Base 
Register YES NO NO NO YES YES 

Memory Access: 
Read Only YES NO YES YES YES NO 

Demand Paging YES NO NO NO NO YES 

Descriptor-Based I/O NO YES NO NO YES NO 

I/O Handled as 
Memory Access NO NO YES NO NO NO 

SUMMARY 

Satisfies All 
Mandatory Requirements NO NO YES YES NO NO 

Satisfies All 
Desirable Requirements NO NO NO NO 

  
NO NO 

Table 6.3-1 Processor Characteristics Table 
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7.  Conclusions of the Working Group 

Following is the list of conclusions to which the 
working group has come during its month-long feasibility 
study effort. 

(1) A Secure Communications Executive (SCE) can be 
realized by tailoring the security kernel to provide 
communications applications support. 

a. A two level machine suffices. 

b. Memory segmentation is required and hardware 
protection support is necessary. 

(2) The constraints imposed by SCE design do impact 
the design and execution of applications programs. 

(3) The Secure Communications Executive will use 
25-30% of the total CPU time available at maximum 
throughput.  This is believed to be comparable to that 
used by a conventional executive. 

(4) Tailoring the security kernel to a 
communications function in a two-state machine will 
increase the amount of code to be certified. 

(5) There is no saleable certification scheme on 
record and certification policy is unclear.  The policies 
and procedures for certifying a computer's security are a 
parallel development and are not conclusive. 

(6) The detailed examination and documentation 
involved in certification will force a more accurate 
Secure Communications Executive. 

(7) No increase in core requirements will be caused 
by the SCE design. 

(8) With or without the SCE and based on 82 
instructions/character, minicomputer processors of the 
class being considered for the CP cannot support a 6000 
character/second throughput. 

(9) The use of the SCE does limit the number of 
machines that can be used. 

(10) Of a list of 6 commercial miniprocessors from 
major manufacturers, two met all the mandatory 
requirements of Section 6.2 and none met all desirable as 
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well as mandatory requirements. The one mandatory 
requirement which was not met by the four other processors 
was, in every case, the minimum segment size which can be 
altered by hardware modification. 

(11) There is technical risk involved ir the SCE 
proof of correctness.  The proof of correctness is still 
being verified piecemeal in conjunction with other 
systems, and stating conclusively at this time that no 
problems will occur would be premature. 

(12) The SCE is rigorously verified to enforce 
access authorization. Therefore, the SCE provides 
effective compromise prevention. 

(13) The SCE will not solve the integrity problem, 
but does provide an aid in testing system integrity. 
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APPENDIX A 

APPLICABILITY OF AUTODIN 

SECURITY CONTROLS 



A.1  Overview 

A. 1. 1  Purpose of t_he Report 

This report is a description of current DCS AUTODIN 
security controls and techniques.  The security measures 
discussed are those which apply to a modern communications 
system. 

A.1.2 Scope of the Report 

The AUTODIN techniques are discussed in the light of 
both hardware and software considerations.  Message 
handling controls are presented in detail, with emphasis 
on software.  It is not the intent of this report to 
provide a comprehensive threat analysis.  Unique system 
characteristics, such as auto-dial, auto-answer and 
exception transmission, are not directly addressed. 
Message switching functions as found at the CP are of 
prime concern, and packet switching characteristics that 
exist ir: the communication system are not addressed. 

A.1.3  Background 

The seed from which AUTODIN (AUTOmatic Digital 
Network) grew was planted by the Air Material Command 
under the title COMMLOGNET.  For this reason, several 
AUTODIN switches are on or near AFLC bases.  The system 
was originally designed to manage the flow of supply 
transactions among the Air Material Areas and as such 
would have been an unsecure system.  The b^sic idea was 
expanded to become a store and forward message processing 
system for the DoD and other agencies (e.g., Red Cross, 
contractors). 

Since no proven system for insuring message security 
in an automated communications system existed in the early 
'60s, a set of ad hoc rules developed, beginning with the 
simple concepts of physical security and cleared 
programmers.  These rules have developed to the point 
where DCA can state that "message security is assured 
through multiple security checks within the AUTODIN 
switching centers".  DCA manages AUTODIN for the JCS. 

A.1.4  Format of the Report 

Section 2 describes the software security design with 
detailed explanations of header and message processing. 
Section 3 addresses the means by which AUTODIN techniques 
would provide for compromise protection and message 
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integrity.  Section 4 presents a statement of acceptable 
performance in light of current system operations. 
Section 5 presents the software production procedures used 
in AUTODIN.  Section 6 provides a list of hardware 
requirements and machines which meet these requirements. 
Section 7 presents conclusions that can be derived from 
this report and current AUTODIN applications. 
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A.2 Software Security Design 

The security protection features listed below have 
been incorporated into DCS AUTODIN Switching Center (ASC) 
software. 

A.2.1  Input to the ASC (per-message basis) 

A.2.1.1  Each message has a five-character security field 
consisting of a single character appearing five times. 
Each character of the field is checked for the presence of 
a valid code and for perfect agreement with each of the 
other four characters; an error will result in message 
rejection. 

A.2.1.2 Message security is checked against the line 
security; (1)  if the input line is not cleared for the 
input message, input message transmission is inhibited. 

A.2.1.3  If the addressee is not cleared to receive the 
message, the associated delivery will not be made and the 
originator will'be notified that message routing is 
invalid due to security reasons. 

A.2.2  Output from the ASC (per-message basis) 

Output transmission will be inhibited if either the 
output line or  addresses is not cleared to receive the 
message. 

A.2.3  Input to the ASC (continuous) 

On input to the ASC, message data is accumulated into 
80-character blocks.  Each block is tagged with the proper 
security code (as specified in the message header) and a 
sequential number.  Or: all subsequent internal transfers 
the security code and sequential number of each block are 
checked;  an error or discrepancy will result in 
supervisory notification and output transmission will be 
inhibited.  The security code attached to each block is 
transmitted and checked on ASC-ASC transmissions. 

A.2.4 Straggler Detection 

AUTODIN is programmed to detect input stragglers by 
comparing message header and trailer station serial number 
fields for perfect agreement.  Any discrepancy will result 

(1) These clearance levels are prestored in the ASC. 
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in message rejection.  A straggler is defined as a 
message, or part of a message, whose address section is 
controlling the delivery of both.  Any straggler is 
therefore apt to be delivered to the wrong address. 

A.2.5  Accountability 
n 

A number of ASC internal checks and balances enhance 
security protection directly and indirectly by providing 
for the detection of the interlacing of segments of 
different messages.  Some examples are: 

A.2.5.1  On-line core resident queue tables contain 
message block count.  On message output actual block count 
is checked against the queue table block count;  a 
discrepancy results in an appropriate supervisory 
notification and termination of output transmission. 

A.2.5.2 On ASC-ASC trunks the message length or "block 
count" (number of 80-character blocks) is transmitted in a 
message control block (MCB).  The receiving ASC will 
verify the sequential block number and MCB block count 
against the actual count of blocks received; a discrepancy 
will result in message rejection. 

A.2.5.3 On input data messages which contain a block 
count field, the number of blocks actually received is 
compared with the block count specified in the message • 
header;  a discrepancy will result in message rejection. 

A.2.6 0ff-l.1.t:o Programs 

Off-1 !..'.•> -.'i>oort nrograms which print out data 
contained on history tapes have been programmed to inhibit 
or suppress the printing of certain highly classified data 
unless ron-routine extraordinary supervisory intervention 
is invoked. 
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A.3 Security Provided by AUTODIN Techniques 

A.3*1  Compromise 

A. 3.1.1 Definition of Compromise 

A security compromise is defined as one or more of 
the following conditions. 

1) A terminal or interfaced system receives a 
message classified to a level higher than the clearance 
level of the terminal interfaced system. 

2) A terminal or interfaced system receives a 
message having a special access category not contained in 
the set of special access categories authorized for the 
terminal or interfaced system. 

A.3.1•2 AUTODIN Compromise Prevention Measures 

A.3.1.2.1  Message Input 

AUTODIN computer checks are made on the redundant 
security marking characters at the time of message input 
to assure that: 

1) they represent a valid security level. 

2) they are consistent with each other. 

3) the level they represent is authorized to be 
transmitted by the transmitting terminal. 

'4)  the level they represent is authorized for 
delivery to the addressee. 

A.3.1.2.2 Message Output 

On message output from the switch, checks are made to 
determine that: 

1) the addressee is authorized to receive the level 
of classification assigned to the message. 

2) the output communications channel is cleared to 
carry the level of classification assigned to the message. 

These checks must be repeated at output time even 
though they were made at the time of message input, in 
order to protect traffic from changes which may occur in 
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the communications line status tables.  For example, a 
subscriber's traffic may have been alt-routed to a 
subscriber who was not cleared to receive the same level 
of traffic. 

A.3.2  Message Integrity 

A. 3•2.1  Definition 

Message integrity includes those functions necessary 
to insure that the information in the system is delivered 
accurately without distortion or errors introduced during 
distribution, that the failure of one or more hardware or 
software ellments can be adequately detected and an 
appropriate restart/recovery procedure initiated. 

. 
A.3•2.2 Failure Recovery Function 

Redundant records and storage are maintained on-line 
at each switch to provide message integrity when minor 
failures occur in the system.  When a catastrophic failure 
occurs, messages which were in the switch at the time 0f 
failure can be retrieved from either of the two history 
tapes. 

A.3•2.3 Service Message Function 

If a. message does not meet the proper format or is 
irregular in any way, the system rejects the message and 
declares an error rather than attempt to continue 
processing the message.  While the required software 
action is not specified for each message check failure!, 
the following rules generally apply. 

1) Any time that message check errors are detected 
at time of message input, the message is either rejected , 
with appropriate control signals to the originator, and/or 
the switch originates a service message indicating 
rejection and the reason. 

2) If a message check error is detected at any other 
time during processing (i.e., after the switch has 
accepted the message and is therefore accountable for it), 
the message is usually "scrubbed' ,from the system and 
switch service personnel are responsible for follow-up      , 
action to insure that the messagefis protected. p 

1 
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A.3.2.4  Straggler Pm.otloi 

TV- \TTTODTM oonouter program checks the incoming 
message to detect the presence of a straggler.  For this 
purpose the station serial number in the message header is 
compared for equality to that in the trailer. 

A.3.2.5 Communications Line Functions 

Parity checks are accomplished or. all data transfers 
within the processor, between processor and peripheral 
devices, and on communications lines.  Parity checking 
assures integrity of address indicators, precedence, and 
security markings. 

A. 3 • 2.6 Message Bioolj Handling Function 

The AUTODIN computer program usually handles messages 
in segments rather than as whole units.  Foolproof 
accounting procedures are used to prevent inadvertant 
connection of segments from different messages into one 
message.  To this end, the following checks are used. 

1)  Each segment is sequentially marked on 
transmission or storage, and the sequential number is 
checked on receipt or removal from storage. 

?)     Each segment is marked with the classification of 
the message as indicated by the header whenever 
transmitted or stored, and consistency of classification 
marking is checked on receipt or removal from storage. 

3) The count of message segments on input is 
compared with the number of message segments being 
prepared for output. 
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h.H    Performance 

The AUTODIN security techniques exist in several 
operational systems.  Memory requirements, executive 
overhead, and throughput capacity have been proven to be 
acceptable in each system. 
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A.5 Software Production 

DCA headquarters maintains complete control of all 
software.  All personnel who Assist in the development of 
program library tapes are cleared for access to the 
highest classification of traffic processed by the system. 

A.5.1  Program Similarity 

The on-line programs for each AUTODIN switch are 
identical and are developed by DCA.  The patch areas are 
also identical and centrally managed.  The only variation 
among these switches occurs in the security authorization 
data base.  This data base is developed and maintained at 
the switch and contains routing, security, and media 
information on each subscriber.  Although each data ba3e 
may contain varying numbers of blank entries, all are the 
same length in order that the on-line programs can be 
identical. 

A. 5 . 2  Program Changes 

All program reassemblies are conducted in the secure 
environment of the test switching centers.  (DCA maintains 
two such test switches - one CONUS configuration and one 
overseas.)  Small changes to the program ars implemented 
through the use of patches.  These patches are written, 
tested and documented at the test switches.  The patches 
are then delivered to the active switches and the source 
coding changes retained for use in the next reassembly. 
If the change is to be implemented to comply with a 
specific operational requirements, the agency concerned 
(e.g., NSA) will be invited to participate in the formal 
test and acceptance. 

A.5.3 Program Changes (emergency) 

Two on-site programmer's (OSP's) are assigned to each 
switch to provide software maintenance support to the 
switch supervisor.  If a processing error is discovered an 
OSP will investigate the problem and produce an emergency 
patch.  This patch must be coordinated with the test 
switch and cannot remain on-line for more than 48 hours. 
Personnel at the test switch will investigate the problem 
and generate a properly documented patch. 

A.5.4 Program Distribution 

The assembly run at the test switch produces an 
unclassified program library tape (PLT).  The PLT is sent 

A-9 



via certified mail to the OSP, who combines it with the 
security authorization data base to produce the 
site-unique house operated program (HOP) tape.  This HOP 
is the new on-line system tape and is classified to the 
highest level of traffic processed by the switch. 
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A.6  AUTODIN Requirements 

A.6.1  Hardware 

A. 6. 1. 1 Mandatory Fe&Utn s 

A machir-e with it least two execution states and 
suitable levels of privilege is required. 

A.6.1.2 Desirable Features 

1) segmented memory 

2) unique memory access control of read-execute, 
read-write, no access and read only 

A.6.2  Existing Hardware 

Of the six commercially available minicomputers 
surveyed (DATACRAFT 6024/4, DATA GENERAL NOVA 840, DEC PDP 
11/45, INTERDATA 7/32, MODCOMP IV and PRIME 300), all have 
all mandatory features and four of the six have all 
desirable features. 
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A.7 Conclusions 

A.7*1  AUTODIN emphasizes message integrity 
considerations.  Message handling techniques for integrity 
preservation are well defined, and correct implementation 
of these techniques assures message integrity. 

A.7.2 Use of AUTODIN security techniques in a modern 
communication system will not impact the program 
development schedule, since use of these techniques was 
considered in the projection and speciflcationa. 

A.7.3 Application of AUTODIN software security techniques 
result in acceptable overhead in existing systems, and 
application of these techniques is not expected to 
adversely affect throughput. 

A.7.4 AUTODIN techniques offer protection against 
compromise to the degree that software is carefully 
designed and exhaustively tested. 
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